
ISSN 0361�7688, Programming and Computer Software, 2012, Vol. 38, No. 4, pp. 201–209. © Pleiades Publishing, Ltd., 2012.

201

1 1. INTRODUCTION

In various application domains the functional
behavior (or the specification) of a system can be rep�
resented as a finite state machine (FSM). FSMs are
also used as the underlying models for formal descrip�
tion techniques, such as SDL and UML State Dia�
grams. An FSM has finite number of states and a finite
number of transitions labeled by pairs of input and
output symbols. If the initial state of the specification
is known then the behavior can be described as the
mapping of input sequences (sequences of input sym�
bols) that can be applied to a machine into their corre�
sponding output sequences (sequences of output sym�
bols).

In FSM�based conformance testing, one usually
assumes that not only the specification, but also an
implementation under test (IUT) can be modeled as
an FSM. In order to check if a given IUT conforms to
its specification, a test suite (TS) of input/outputs
pairs of test sequences (test cases) is derived from the
given specification. The input sequences of a test suite
are then applied to an IUT and outputs generated
(observed) by the IUT are compared with expected
outputs. If the outputs do not match, then the IUT has
a fault. When a test suite should have the so�called
guaranteed fault coverage appropriate types of imple�
mentation faults are described by a set of implementa�
tion FSMs, usually called a fault domain. A test suite is

1 The article is published in the original.

complete if it detects every faulty implementation of
the considered fault domain.

Many conformance test derivation methods have
been developed for deriving tests when the system
specification and IUT can be represented as determin�
istic FSMs. For related surveys see (Bochmann and
Petrenko, 1994), (Lee and Yannakakis, 1996), (Doro�
feeva et al., 2005b), (Dorofeeva et al., 2010). Well�
known methods are called the W (Vasilevskii, 1973),
(Chow, 1978), Wp (Fujiwara et al., 1991), UIOv
(Vuong et al., 1989), HSI (Petrenko et al., 1993),
(Petrenko and Yevtushenko, 2005), (Yevtushenko and
Petrenko, 1990), H (Dorofeeva et al., 2005a), (Kou�
fareva et al., 2002), and SPY (Simoa et al., 2009).
All these methods guarantee the following fault cover�
age: given a deterministic reduced (minimal) specifi�
cation FSM � with n states, a test suite TS derived
from � by any of these methods, detects (kills) every
non�equivalent FSM IUT of � provided an upper
bound m on the number of states of an IUT is given.
It is usually assumed that m equals to or is greater than
n. The worst�case length of a test suite generated by the
above methods is of the order O(km – n + 1n3), where k is
the number of inputs of an FSM, thus, unfortunately,
when m > n a test suite can be of an exponential length.

Given the possibly non�reduced deterministic
FSM specification �, user defined faults are described
as a set of suspicious transitions which can be faulty in
an implementation; the obtained non�deterministic
FSM is called fault function in Petrenko and Yevtush�

FSM�Based Testing from User Defined Faults Adapted
to Incremental and Mutation Testing1

K. A. El�Fakiha, R. Dorofeevab, N. V. Yevtushenkob, and G. V. Bochmannc

a Department of Computer Science and Engineering, American University of Sharjah, Sharjah, UAE, PO Box: 26666
b Tomsk State University, 36 Lenin Str., Tomsk, 634050 Russia

c University of Ottawa, Ont., K1N 6N5, Canada
e�mail: kelfakih@aus.edu, drf@kitidis.tsu.ru, ninayevtushenko@yahoo.com, bochmann@site.uottawa.ca

Received January 15, 2012

Abstract—We study the problem of deriving a test suite with guaranteed fault coverage from a given finite state
machine specification with respect to some given user defined faults. We consider the case when an imple�
mentation under test can have more states than its specification while user defined faults are implemented in
an arbitrary way. We show that our approach can be used for FSM�based incremental and mutation testing
and correspondingly we investigate cases that can be used for reducing length of obtained test suites. In some
cases, worst�case length of obtained test suite becomes polynomial. Experiments show significant gains is
using our approach in comparison to testing the whole specification.

Keywords: conformance testing, finite state machines, model�based testing, mutation testing, incremental
testing.

DOI: 10.1134/S0361768812040019

202

PROGRAMMING AND COMPUTER SOFTWARE Vol. 38 No. 4 2012

EL�FAKIH et al.

enko (1992) or a mutation machine in (Koufareva et
al., 1999). Test derivation from user defined faults
involves the generation of a test suite that guarantees
the detection of any faulty IUT that is not equivalent
to � and which is a deterministic submachine of the
considered mutation machine. The method in
(Petrenko and Yevtushenko, 1992) considers test deri�
vation when the specification and an IUT have the
same number of states, i.e. m = n, and the method in
(Koufareva et al., 1999) considers the case when an
IUT can have more states than its specification, i.e.
when m ≥ n. However, both methods rely on the
assumption that for each transition of the specification
FSM the number of faults defined by a user in the cor�
responding mutation machine is rather small. How�
ever, this is not the case in some application areas such
as in FSM�based incremental testing of modified
specifications and their (modified) implementations
(El�Fakih et al., 2004). Accordingly, in this paper, we
consider applications areas where suspicious transi�
tions can be implemented in an arbitrary way, i.e., sus�
picious transitions are chaotic transitions in the muta�
tion machine. In this case a mutation machine has
only two types of transitions, namely, deterministic and
chaotic transitions. Deterministic transitions corre�
spond to non�suspicious transitions while chaotic
transitions correspond to suspicious transitions. Sev�
eral proper cases can be considered for shortening
length of obtained test suites when considering such
mutation machines. In some cases, worst�case length
of an obtained test suite becomes polynomial. More
precisely, we first generalize the incremental testing
problem given in (El�Fakih et al., 2004) for the case an
IUT can have more states than its specification and
present an algorithm that determines which states of a
mutation machine have to be identified in an IUT. We
derive appropriate state identification tests for these
states by utilizing properties of the mutation machine
inherited from the specification. In addition, we iden�
tify the transitions of the mutation machine that
should be checked in an IUT and derive correspond�
ing transition testing tests. Several cases are studied for
shortening a resulting test suite.

In this paper, we also consider how our approach
can be applied to FSM�based mutation testing. Muta�
tion testing is fault�based testing technique that has
been well investigated in the past thirty years. The
reader may refer to Jia and Harman (2006) for a com�
prehensive survey on mutation testing including
model�based mutation testing. Fabbri et al. (1994,
1999) applied mutation analysis for FSMs. Relevant
mutation operators are introduced and benefits of
using 2�order mutants are reported. Hierons and Mer�
ayo (2009) consider mutation testing from probabilis�
tic and stochastic FSMs. Maldonado et al. (2004) and
De Souza et al. (2000) consider mutation testing from
SDL and Estelle specifications, respectively. Unfortu�
nately, the number of possible mutants of an FSM is
huge, and accordingly, in this paper, we propose an

FSM�based mutation testing approach that uses a
compact representation of many mutants, namely, a
mutation machine, and then derive a complete test
suite for all considered mutants without the explicit
enumeration of mutants. In addition, we discuss how
to derive the compact representation in such a way that
a corresponding complete test suite is of polynomial
length. However, in general, when FSM specification
� is derived from a given code, the specification can be
non�reduced; and thus, mutants derived from the
specification can have more states than the reduced
form of the specification. In this context, the method
presented in this paper can be used for FSM�based
mutation testing.

In order to get a feeling about the length of
obtained test suites in practical situations, we have
experimented with the testing method proposed in this
paper. According to the conducted experiments, when
the number of chaotic transitions represent up to 5,
10, 15, 20, and 30% of the mutation machine, on aver�
age, the length of obtained test suites are 66, 14, 24,
36, and 87 (10, 20, 30, 50, and 14) percent of the cor�
responding test suites derived for the whole specifica�
tion when m = n + 1 (m = n + 2).

This paper is organized as follows. Section 2
includes notations and definitions used in the paper.
Section 3 introduces the incremental and mutation
testing problems in the context of test derivation from
a mutation machine which includes only deterministic
and chaotic transitions. In particular, we show how a
mutation machine with only deterministic and chaotic
transitions can be constructed for FSM�based incre�
mental and mutation testing. Section 4 includes our
test derivation algorithm illustrated through a simple
working example. Section 5 includes experimental
results and Section 6 concludes the paper.

2. PRELIMINARIES

A finite state machine (an FSM or a machine) is a 5�
tuple � = (S, X, Y, hS, s1) (Starke, 1972), where S is a
finite set of states, s1 is the initial state, X(Y) is a finite
set of input (output) symbols, and hS: S × X
2S × Y\∅ is a behavior function where 2S × Y is the set of
all subsets of the set S × Y. Given present state si and
input symbol x, each pair (sj, y) ∈ h(si, x) represents a
possible transition from state si under the input x to the
next state sj with the output y. A transition from state si

under input x is deterministic if |hS(si, x)| = 1. The tran�
sition from state si under input x is chaotic if hS(si, x) =
S × Y. If each transition is deterministic then FSM �
is said to be deterministic. In the deterministic FSM �
instead of the behavior function hS we use two func�
tions, a transition function δS: S × X S and an out�
put function λS: S × X Y. An FSM � = (T, X, Y,
hT, t1) is a submachine of � = (S, X, Y, hS, s1) if T ⊆ S,
t1 = s1 and for each (t, x) ∈ T × X it holds that hT(t, x) ⊆

PROGRAMMING AND COMPUTER SOFTWARE Vol. 38 No. 4 2012

FSM�BASED TESTING FROM USER DEFINED FAULTS ADAPTED 203

hS(t, x). The set of all deterministic complete subma�
chines of � is denoted Sub(�). As usual, the behavior
function hS can be extended to the set X* of finite input
sequences. Given state s ∈ S and input sequence α =
x1x2…xk ∈ X*, the pair (sk + 1, y1y2…yk) ∈ hS(s, α),
y1y2…yk ∈ Y*, if there exist states s1= s, s2, …, sk, sk + 1

such that (sj + 1, oj) ∈ hS(sj, ij), j = 1, …, k. The set out(s,
α) = {γ| ∃s' ∈ S[(s', γ) ∈ hS(s, α)]} denotes the output
projection of hS, while the set next_state(s, α) = {s' | ∃γ ∈
Y*[(s', γ) ∈ hS(s, α)]} denotes the state projection of h.
An FSM is connected if each state is reachable from the
initial state. As usual, without loss of generality, we
consider only connected FSMs. A state si is said deter�
ministically reachable (or d�reachable) from the initial
state if the state can be reached from the initial state
through deterministic transitions. Let � = (S, X, Y, hS,
s1) and � = (T, X, Y, hT, t1) be two FSMs. A set Q of
input sequences is called a state cover set of � if for
each state si of S, there is an input sequence αi ∈ Q that
takes � to state si from the initial state. We further con�
sider prefix�closed state cover sets. A prefix closed
cover set exists for each connected FSM. Given two
complete deterministic FSMs � and �, states sj of �
and ti of � are equivalent (Gill, 1962) if ∀α ∈ X* it
holds that outS(sj, α) = outT(ti, α). Otherwise, we say
that states si and tj are distinguishable. An input
sequence α such that outS(sj, α) ≠ outT(ti, α) distin�
guishes the states sj and ti. The set V of input sequences
deterministically (d�) distinguishes states ti and sj if
there exists a sequence α ∈ V that distinguishes ti and sj

and traverses only deterministic transitions when
applied at these states.

A deterministic FSM is reduced if its states are pair�
wise distinguishable. Given a reduced FSM � and a
state sj ∈ S, a set Wj of input sequences is called a state
identifier of state sj if for every other state si ∈ S there
exists α ∈ Wj such that λS(sj, α) ≠ λS(si, α). A separating
family (Yannakakis and Lee, 1995) or a family of har�
monized state identifiers (Yevtushenko and Petrenko,
1990; Petrenko, 1991) is a collection of state identifi�
ers Wj which satisfy the following condition: For any
two states sj and si, j ≠ i, there exist β ∈ Wj and γ ∈ Wi

which have a common prefix α such that λS(sj, α) ≠
λS(si, α). A separating family is known to exist for any
reduced machine. Complete FSMs � and � are
equivalent, written � ≅ �, (distinguishable) if their ini�
tial states are equivalent (distinguishable). If FSMs �
and � are distinguishable then an input sequence α
that distinguishes their initial states is said to distin�
guish the machines � and �. We say that an imple�
mentation � conforms to the specification � if � is
equivalent to �.

Given a complete deterministic specification FSM
� = (S, X, Y, δS, λS, s1), a complete FSM � = (M, X,
Y, hM, m1) is called a mutation machine (for �) if � is

equivalent to a submachine of �. Let Sub(�) denote
the set of all complete deterministic submachines of
�. A test suite is a finite set of finite input sequences
(called tests or test cases) of the specification FSM.
Similar to FSM�based testing methods, we assume
that a reset function (hereafter written “r”) is available
that allows the reliable reset of the implementation
under test. This implies that each test case of the test
suite starts with the reset operation. A test suite TS is
complete w.r.t. the given �, also called complete w.r.t.
the fault model (�, ≅, Sub(�)), if for each complete
deterministic submachine � of � that is distinguish�
able from � there exists a sequence α ∈ TS that distin�
guishes machines � and �. In this paper, we consider
mutation machines such that for each state and each
input, the transition from the state under the input is
either deterministic or chaotic. In the following sec�
tion, we discuss two application problems where such
mutation machines are of practical use.

3. DERIVING MUTATION MACHINES
FOR INCREMENTAL

AND MUTATION TESTING

Given a non�reduced deterministic specification
machine �, with n states, and a non�deterministic
possibly non�reduced mutation machine � with m
states, where m ≥ n, testing from given user defined
faults involves the derivation of a test suite that is com�
plete w.r.t. to the fault model (�, ≅, Sub(�)) where the
mutation machine is usually derived by augmenting
the given specification machine � with a set of user
defined faults. If a mutation machine has only two
types of transitions, namely, deterministic or chaotic,
then several cases can be used for shortening a result�
ing test suite, and in some cases (worst�case) length of
a test suite becomes polynomial. In this section, we
show that such mutation machines can be derived in
the context of incremental and mutation testing, and
thus, those application problems fit well our test deri�
vation approach. Our test derivation method is pre�
sented in Section 4.

3.1. Mutation Machine for Incremental Testing

Given a reduced IUT and its corresponding system
specification, a designer may change (or modify) the
specification and its corresponding IUT based on
changes in the user requirements. Incremental testing
deals with the derivation of tests for checking that the
modified parts of a modified specification are cor�
rectly implemented in a modified IUT (El�Fakih et
al., 2004). In this paper we consider the general case
when an initial IUT can be non�reduced, that is, when
an IUT can have more states than its specification.

Given a reduced specification FSM � with m
states, we assume that an IUT � with m states, the
IUT has been tested and found to be conforming (i.e.,

204

PROGRAMMING AND COMPUTER SOFTWARE Vol. 38 No. 4 2012

EL�FAKIH et al.

equivalent) to its specification. The modified specifi�
cation is obtained from the initial specification � by
the application of some basic modifications such as
changing the outputs and/or the ending�states of some
transitions, adding/deleting transitions or states (El�
Fakih et al., 2004), and correspondingly the reduced
�' of the modified specification can have n states
where n < m. Finally, it is assumed that the initial
implementation � was modified in order to get an
implementation that conforms to the modified speci�
fication. We assume that the modified implementation
was obtained by modifying only those transitions of �
which correspond to the modified specification transi�
tions (El�Fakih et al., 2004). In other words, for each
unmodified transition from state sj under input a, it is
assumed that the transition from a corresponding state
tj under a is left intact in the modified implementation.
Incremental testing deals with the generation of a set
of test cases, called incremental test suite, that guaran�
tees that if a modified implementation passes the test
suite then it is a conforming implementation of the
modified specification. This means an incremental
test suite provides complete fault coverage under the
assumption that the transitions of the implementation
corresponding to unmodified transitions in the speci�
fication are not modified. The incremental testing
problem can be reduced to testing from given user
defined faults, i.e. w.r.t. fault model (�', ≅, Sub(�)),
where, in this case, the mutation machine � is derived
by changing the modified transitions of � to chaotic
transitions and the specification �' is the reduced form
of the modified specification. Thus, the mutation
machine includes only chaotic transitions corre�
sponding to the modified transitions and deterministic
transitions corresponding to the un�modified transi�
tions of �. In fact, the mutation machine � inherits
the conforming part of the original implementation
and includes as submachines the set of all possible
implementations of the modified specification. How�
ever, the reduced form of the modified specification
can have less states than the initial specification, and
thus, the number of states of the mutation machine �
can be greater that that of the specification �'.

3.2. Mutation Machine
for FSM�Based Mutation Testing

Given a deterministic FSM representing a given
system, the FSM can be non�reduced, for example,
when the FSM is derived from a given code. Consider
k disjoint sets of subsets of transitions of the given
FSM. For each selected set of transitions, we derive a
corresponding mutation machine �j, j = 1, …, k, that
includes as submachines all possible mutants of that
subset. The mutation machine is derived in a special
way that fits our purposes, i.e. the machine includes

only deterministic and chaotic transitions. Then, we
use the method presented in this paper for deriving a
complete test suite w.r.t. the fault model (�, ≅,
Sub(�)) using �j and �. The derived test suite can
detect any faulty IUT that can be distinguished from �
using any set of transitions in the selected subset.
Thus, if the collection of considered subsets includes
all transitions of the specification FSM then the col�
lection of derived test suites for such subsets of transi�
tions detects mutants of the considered fault models
which have up to m states. The mutation machine �j
is derived by changing each selected transition of the
given FSM into chaotic. However, the reduced form �
of the initial specification FSM can have less states
than mutation machines �j, j = 1, …, k. In order to
obtain polynomial length tests, the k sets of transitions
are selected in such a way such that the initial state of
selected transition is reachable in �j through deter�
ministic transitions.

4. TEST DERIVATION APPROACH

In this section, we propose a test derivation
approach w.r.t. the fault model (�, ≅, Sub(�)), where
� is a reduced deterministic specification FSM with n
states and � is non�deterministic possibly non�
reduced mutation machine with m states, m ≥ n, such
that � has only deterministic and chaotic transitions.

4.1. Test Derivation: State Identification Phase

Similar to other FSM�based testing methods, our
proposed test derivation method has two phases. In the
first “state identification” phase, tests, called TSAlg1, are
selected using Algorithm 1 in order to identify all the
states of the IUT. In the “transition testing” phase, tests
are selected to check chaotic, and in some cases deter�
ministic transitions, when needed, for correct output
and correct ending states.

When an IUT, i.e. a deterministic submachine of
�, can have more states than �, in order to reach and
identify all states in the implementation, we need to
append the state cover set of the specification �, with
all input sequences of length (m – n). Correspond�
ingly, the length of a complete test suite is exponential
in respect to the difference (m – n) (Lee and Yanna�
kakis, 1996; Bochmann and Petrenko, 1994). In order
to reduce the length of a test suite, in this section, we
present an algorithm that derives a state cover set for all
possible implementations of �, by utilizing accessible
(known) information provided by the mutation
machine �.

In order to simplify our notations, hereafter, we
denote � = (M, X, Y, hM, m1) and � = (S, X, Y, δ, λ,
s1) the mutation machine and its corresponding
reduced specification.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 38 No. 4 2012

FSM�BASED TESTING FROM USER DEFINED FAULTS ADAPTED 205

Algorithm 1. Deriving a state cover set for each sub�
machine of mutation machine �.
Input: The reduced specification � with |S | = n, a

separating family F = {W1, …, Wn} of �,

the mutation machine � with |M | = m ≥ n.
Output: A set of test sequences TSAlg1 and a state Cover

Set (CS) for all deterministic submachines of
� that have the same output response to each
sequence of the set TSAlg1 as the specification
FSM.

Step 1. For each state mj ∈ M that is deterministi�
cally reachable from m1 through a sequence βj, include
mj in the (initially empty) set Md, include βj in the (ini�
tially empty) prefix�closed cover set Qd of the set Md,
and include the state sj ∈ S where sj = δ(s1, βj) into the
(initially empty) set of states Sd. Then, derive a prefix�
closed cover Qnd of the set of states in S\Sd of � and
obtain the union Q = Qd ∪ Qnd.

For each state sj of �, determine the set d(sj) of all
states of � that are deterministically distinguishable
from sj by the state identifier Wj.

Step 2. Include the sequences of Q into the (ini�
tially empty) cover set CS.

If |Q | = |M | then Go�to Step 3. Otherwise, for every
sequence α ∈ Q and each sequence xμ of length m – |Q |
such that (i) ax is not a prefix of a sequence in Q, (ii)
α ∈ Qd and the transition under input x from the state
that is deterministically reachable from m1 by α is cha�
otic or α ∈ Qnd, do the following:

Determine the shortest prefix χ of xμ such that
there exist a set of k non�empty prefixes χ1, χ2, …, χk

(χ1 is a prefix of χ2, etc.) of the sequence xμ such that

k + , where = Snd ∩ {δ(s1, αχi): i = 1, …, k},
is greater than the cardinality of the set
(M\ (δ(s1, αχi))\Md).

Include into CS each sequence αν, where ν is a
proper prefix of χk. Include into the set TSAlg1 the
sequences αχkWk where Wk is the identifier of the state
sk = δ(s1, αχk).

If there is no such prefix χ then include into CS
each sequence αν where ν is a prefix of xμ.

Step 3. For every sequence γj in the set CS, include
into the set of tests TSAlg1 all the sequences rγjW, where
W is a state identifier of state δ(s1, γj). End Algorithm 1.

We note that when m = n, a state cover set returned
by Algorithm 1 coincides with a cover set of the speci�
fication FSM. If all transitions of the mutation FSM
are chaotic then Algorithm 1 returns a cover set that
coincides with a cover set obtained using traditional
FSM methods. If |Q | derived at Step 1 equals to m,
then a cover set has m sequences, i.e., its length
becomes polynomial.

Theorem 1. If an implementation � that is a subma�
chine of the mutation machine � passes the sequences

Ŝ Ŝ

d
j 1=
k

∩

of the set TSAlg1 derived by Algorithm 1 then the set CS
obtained by this algorithm is a state cover set of �.

Proof. Let � ∈ Sub(�), � = (T, X, Y, δT, λT, t1),
and the output responses of � and � to each input
sequence of the set TSAlg1 coincide. Then sequences of
the set Q take the FSM � from the initial state to |Q |
different states. Correspondingly, the FSM � can
reach each reachable state from one of these states by
an input sequence with length at most m – |Q |. Con�
sider an input sequence aγ of length m – |Q | that
should be applied after an appropriate input sequence
β ∈ Qd. If the transition from state m, which is reached
in � (and �) after β, under input a is deterministic
then state m' reached in � (and correspondingly in �)
after βa can also be reached via an appropriate
sequence β' of the set Qd; and thus, each state that is
reachable via some prefix of aγ from the state reached
by β, is also reachable from a state reachable after β'
through a shorter prefix. For this reason, we do not
include the sequence βaγ into the set CS.

We now assume that there exist non�empty prefixes

χ1, …, χk of the sequence aγ such that (k +), where

 = Snd ∩ {δ(s1, αχi) : i = 1, …, k}, is larger than the

cardinality of the set (M\ (δ(s1, αχi))\Md).

We observe that different states of the implementa�
tion � are already reached after sequences of the set
Qnd if the output responses of FSMs � and � to each
input sequence of the set TSAlg1 coincide. If after some
prefix χj in the FSM � there occurs a state m of the set
Md of d�reachable states then all states reachable from
this state can be also reached from the state m. Therefore,

there are at most |(M\ (δ(s1, αχi))\Md)| –

new states in the FSM � that can be reached after the

prefixes χ1, …, χk and thus, if k + >

|(M\ (δ(s1, αχi))\Md)| and the output responses

of FSMs � and � to each input sequence of the set
TSAlg1 coincide, then the prefix αχk will take the FSM
� into a state that can be reached via another input
sequence of the set CS.

In the following, given state mj of the set Md, we
denote βj the sequence of the set Qd that deterministi�
cally takes the mutation machine � into state mj from
the initial state. Given state si of the set S\Sd, we
denote αi the sequence of the set Qnd that takes � to
state si from the initial state.

Example. As an application example of Algorithm 1,
consider the mutation FSM in Fig. 1 where non�sus�
picious (deterministic) transitions are shown and for
simplicity of presentation suspicious (chaotic) transi�
tions corresponding to user defined faults are not
shown. The specification FSM � is shown in Fig. 2.
The number n of states of � is 4 while that of � is m = 7.

Ŝ

Ŝ

d
j 1=
k

∩

Ŝ

d
j 1=
k

∩ Ŝ

Ŝ

d
j 1=
k

∩

206

PROGRAMMING AND COMPUTER SOFTWARE Vol. 38 No. 4 2012

EL�FAKIH et al.

The FSM � has a separating family F = {W1 = {b},
W2 = {bb}, W3 = {bb}, W4 = {b}}. Moreover, the state

identifier W1 d�distinguishes s1 from , , , ,

m4; W2 d�distinguishes s2 from , , , , m4;

W3 d�distinguishes s3 from , , , , m4; W4

d �distinguishes s4 from , , , , , .

States Md = { , , , } of � are d�reach�

able from the initial state; thus, we have Qd = { = ε,

 = bb, = b, = c} and the corresponding set of
states Sd = {s1, s3} of �. The set Snd = S\Sd = {s2, s4} and
the corresponding cover set Qnd is {α2 = a, α4 = ba}.
The union Q = Qd ∪ Qnd is prefix�closed and |Q | is 6.
We include the sequences of Q into the set CS.

At Step 3 of Algorithm 1, for every sequence in the
set Q, we derive and add into TSAlg1 corresponding test
sequences. Thus, we add into TSAlg1: rb + rbbb + rbbb +
rcbb + rabb + rbab. If an implementation � ∈ Sub(�)
passes these sequences then there exist 6 different
states in �. We note that the sequences xμ of length
m – |Q | = 1 are a, b, and c.

In Step 2, for = ε in Q; we do not consider xμ =
a, xμ = b, xμ = c, since a, b, c are in Q. We consider

= b in Qd and the ending state ∈ Md. We con�

sider xμ = {c, a}, since ∈ Md takes � to state
from m1 and c and a label the outgoing chaotic transi�

tions from state . First, we consider xμ = c, the end�
ing state s1 of the transition from state s3 under input c
is s1; the state identifier W1 = b d�distinguishes s1 from

, , , , m4. The cardinality of the set

|(M\ (δ(s1, αχi))\Md)| for k = 1 equals 0, since

states and are already covered by sequences in Q.
Thus, we determine the shortest prefix χ = c of xμ = c.
We generate r cW1 = rbcb and add it into TSAlg1. If �

m2' m2'' m3' m3''

m1' m1'' m3' m3''

m1' m1'' m2' m2''

m1' m1'' m2' m2'' m3' m3''

m1' m1'' m3' m3''

β1'

β1'' β3' β3''

β1'

β3' m3'

β3' m3'

m3'

m2' m2'' m3' m3''

d
j 1=
k

∩

m1' m1''

β3'

passes this sequence, then we are sure that bc takes an

IUT to or which are already reachable by

sequences of CS. Thus, we do not need to add = b
into CS with the input c. We do not consider xμ = a since

ba is in Q. In the same way, we consider = c in Q; and

include into TSAlg1: r cW1 = rccb and r aW4 = rcab.

For = bb in Q, we include a = bba into CS.

Now we consider α4 = ba in Q, the ending state s4

reached by ba is in Qnd. We consider every sequence
xμ = {a, b, c}. First consider xμ = a, δ(s1, α4a) is s2 and
has the state identifier W2 = bb that d�distinguishes s2

from , , , , m4. The cardinality of

|(M\ (δ(s1, αχi))\Md)| for k = 1 equals to 2, the

cardinality of where = Snd ∩ {δ(s1, αχ)} equals to 1,
thus, we add the sequence rbaa into CS. For the same
reasons considered in the previous paragraph, we do
not include into CS the sequence ab, while rα4cW3 =
rbacbb is included into TSAlg1. Similarly, we consider
sequence α2 = a in Q and add into TSAlg1 the sequences
rα2aW3 = raabb, rα2bW4 = rabb and rα2cW2 = racbb.
Also, we add into the set CS the sequence α2c = ac.
At the last step we add into TSAlg1 all sequences in the
set CS appended by the corresponding state identifiers.

The obtained set CS contains the sequences {ε, bb,
b, c, a, ba, ac, baa, bba} and is of length 16. In com�
parison the, the HSI method generates a test suite of
length more than 400.

4.2. Test Derivation: Transition Testing Phase

In this section, we show how test sequences for
testing transitions of the mutation machine can be
derived. Let F = {W1, …, Wn} be a separating family of
�. We construct a state cover set CS and a set of state
identification test sequences TSAlg1 as described in
Algorithm 1.

m1' m1''

β3'

β3''

β3'' β3''

β1'' β1''

m1' m1'' m3' m3''

d
j 1=
k

∩

Ŝ Ŝ

m1 m3 m1

m3

m4 m2

b/y

c/e
b/e

c/e
b/y

b/e

b/f
b/e

a/f

c/f b/e

Fig. 1. Mutation FSM � where chaotic ransitions are not
shown.

s1 s2

s3 s4

a/e

a/f c/f

b/y

b/e
c/f

a/f

c/f

b/f
b/e

a/f

Fig. 2. Reduced specification �.

'

''

''''

'

m2'

PROGRAMMING AND COMPUTER SOFTWARE Vol. 38 No. 4 2012

FSM�BASED TESTING FROM USER DEFINED FAULTS ADAPTED 207

Algorithm for the transition testing phase
(i) For each sequence γ that takes � from the initial

state to si do the following:
(a) If γ ∈ Qd, we only need to check the outgoing

transitions of the state to which γ takes � from the ini�
tial state. For each input x such that the transition
under x at state si is chaotic in �, we include into the
test suite the set of test sequences:

rγxWk, (2)

where Wk is a state identifier of state sk that is reached
in � when x is applied as an input at state si.

(b) If γ traverses a chaotic transition in � but state
si of � is d�distinguished by Wj from (m – 1) states of
�, for each outgoing transition at state si under input
x, the transition test sequences are formed as in (a)
given above. The reason is that � is equivalent to a sub�
machine of � and if an IUT has the expected output
response to sequences in TSAlg1 then there is only one
fault�free option left for a deterministic transition from
the state reached in the IUT under the sequence γ.

(c) If γ traverses a chaotic transition in � and state
si is not d�distinguished by Wi from at least two states
of �, the transition test sequences are also derived by
applying Formula (2) for each outgoing transition of
state si.

(ii) Include into the (initially empty) test suite TS
the sequences obtained above and the set of sequences
TSAlg1 obtained in the state identification phase using
Algorithm 1. Delete from the set TS all sequences that
are prefixes of other sequences and all sequences that
traverse only deterministic transitions in � as the out�
put responses of all implementations to these sequences
are known.

Theorem 2. Given the specification � and the
mutation machine �, let F = {W1, …, Wn} be a sepa�
rating family of �. If the implementation � ∈ Sub(�)
passes the test sequences returned by Algorithm 2 then
the implementation � is equivalent to �.

Example. In our working example, consider bb of
CS (obtained using Algorithm 1), where δ(s1, bb) = s1.
We apply Case (i)–(a) since bb ∈ Qd and obtain the
sequence rbbaW2. Consider ba of CS, where ba
traverses chaotic transitions in � and δ(s1, ba) = s4.
All outgoing transitions of s4 are deterministic; how�
ever, we do not need to test these transitions since Case
(i)–(b) applies. Now consider a of CS, where a
traverses chaotic transitions in � and δ(s1, a) = s2.
Case (i)–(c) applies, accordingly, we derive the
sequences raaW3, rabW4, and racW2 to test all outgo�
ing transitions at s2. Similarly, we consider all other
sequence in CS, include all derived test sequences and
the sequences of TSAlg1 into TS, apply (ii) above and
obtain a TS of length 78. In comparison, the HSI
method generates a test suite of length more than 1000
if the whole specification � is used for test derivation.

5. EXPERIMENTAL RESULTS

For a given reduced FSM � with n states and k
input symbols, the worst�case length of the test suite
generated by the FSM methods is of the order
O(km – n + 1n3) (Chow, 1978) when an implementation
FSM can have at most m states. The worst�case length
of a test suite derived using our approach is of the same
order when all the transitions of the mutation machine
are suspicious (chaotic). In some other cases, the
length of a test suite derived using our approach can be
of a lower order. Due to Algorithm 1, the length of a
state cover set CS and correspondingly of a test suite is

proportional to , where |Q | ≥ n. When |Q | = m;
for example, this happens when all states of the muta�
tion machine are reachable through deterministic tran�
sitions, the worst�case length of a test suite is O(kn3).

In order to get a feeling about the length of test
suites in practical situations, we have experimented
with the testing method described in this paper. Figure 3
provides a comparison between the test suite length
obtained by the HSI method and by the method pre�
sented in this paper for the case when m > n. The com�
parison is based on randomly generated completely
specified reduced specifications, with a varying num�
ber of states (n) and inputs (k), and corresponding ran�
domly generated completely specified mutation
machines with varying number of states m (specifi�
cally, m = n + 1, m = n + 2). Although state�oriented
specifications and implementations of real systems
may have somehow different characteristics than ran�
domly generated FSMs, we think that the conclusions
of Fig. 3 also apply to system specifications and imple�
mentations that occur in practice.

For each pair (n, k) shown on the X�axis of Figs. 3a
and 3b, we randomly generated 50 specifications with
n states and k inputs. For each of these specifications,
m = n + 1 (and m = n + 2) we generated 50 corre�
sponding mutation machines with m states with a cer�
tain percentage of randomly selected chaotic transi�
tions. Ten mutation machines had 5% of their transi�
tions chaotic, ten had 10% chaotic, ten had 15%
chaotic, ten had 20% chaotic, and the last ten had 30%
of their transitions chaotic. For each of these mutation
machines, we applied the testing method presented in
this paper and calculated the average length of the
obtained test suites of each group of ten mutation
machines. Moreover, for all generated specifications
with n states and k inputs, we computed the average
length of test suites generated by HSI method. The
ratios (length of test suites using our method)/(length
of HSI test suites) are shown on the Y�axis of Fig. 3.

According to the experiments when chaotic transi�
tions represents up to 5, 10, 15, 20, and 30% of the
whole mutation machine, on average, the length of the
obtained test suites are 66, 14, 24, 36, and 87 (10, 20,
30, 50, and 14) percent of the corresponding HSI test

km Q– 1+

208

PROGRAMMING AND COMPUTER SOFTWARE Vol. 38 No. 4 2012

EL�FAKIH et al.

suites when m = n + 1 (m = n + 2). We observe that
these percentages do not significantly depend on the
sizes of the specifications. It is clear from the above
results that the gain of using our testing method is tre�
mendous and this gain significantly increases as the
difference (m – n) increases. Correspondingly when
performing a mutation testing we can check 20% of
the specification FSM at each step. After five steps
each transition will be covered by a corresponding
mutation machine, i.e., our test derivation method
will be applied five times. The length of a correspond�
ing test suite is expected to be around 2.5% percent of
the corresponding HSI test suites when m = n + 2.

6. CONCLUSIONS

In this paper, we have presented a test generation
method that reduces the length of tests derived from a
mutation machine with only deterministic and chaotic
transitions. We consider the general case when the
number m of states of the mutation machine may be
greater than the number n of states of the specification.
We show how the method can be used for FSM�based
incremental and mutation testing. In some cases, the
length of obtained test suites becomes polynomial.
According to our experiments, when chaotic transitions
represent up to 5, 10, 15, 20, and 30% of the mutation
machine, on average, the length of obtained test suites

are 66, 14, 24, 36, and 87 (10, 20, 30, 50, and 14) per�
cent of the corresponding test suites, derived for the
whole specification, when m = n + 1 (m = n + 2).

REFERENCES

1. Bochmann, G. and Petrenko, A., Protocol Testing:
Review of Methods and Relevance for Software Test�
ing, Proc. of the International Symposium on Software
Testing and Analysis (ISSTA 1994) (Seattle, 1994),
pp. 109–123.

2. Chow, T.S., Test Design Modeled by Finite�State
Machines, IEEE Trans. Software Eng., 1978, vol. 4,
no. 3, pp. 178–187.

3. De Souza, S. de R., Maldonado, J.C., Fabbri, S.C.P.F.,
and De Souza, W.L., Mutation Testing Applied to
Estelle Specifications, Proc. of the 33rd Annual Hawaii
International Conference on System Sciences (HICSS),
Hawaii: IEEE Computer Society, 2000.

4. Dorofeeva, R., El�Fakih, K., and Yevtushenko, N., An
Improved FSM�Based Conformance Testing Method,
Proc. of the IFIP 25th International Conference on For�
mal Methods for Networked and Distributed Systems,
Taiwan: Lecture Notes in Computer Science 3731,
2005a, pp. 204–218.

5. Dorofeeva, R., El�Fakih, K., Maag, S., Cavalli, A.R.,
and Yevtushenko, N., Experimental Evaluation of
FSM�Based Testing Methods, Proc. of the IEEE Inter�
national Conference on Software Engineering and Formal
Methods (SEFM05), Germany, 2005b, pp. 23–32.

3.0

2.5

2.0

1.5

1.0

0.5

0
(20,6) (20,8) (20,10) (30,6) (30,8) (30,10)(40,6) (40,8) (40,10)

5% Modification
10% Modification
15% Modification
20% Modification

(States, Inputs)

3.0

2.5

2.0

1.5

1.0

0.5

0
(20,6) (20,8) (20,10) (30,6) (30,8) (30,10) (40,6) (40,8) (40,10)

5% Chaotic
10% Chaotic
15% Chaotic
20% Chaotic

(States, Inputs)

(a)

(b)

Fig. 3. (a) Experiments with m = n + 1, (b) experiments with m = n + 2.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 38 No. 4 2012

FSM�BASED TESTING FROM USER DEFINED FAULTS ADAPTED 209

6. Dorofeeva, R., El�Fakih, K., Maag, S., Cavalli, A.R.,
and Yevtushenko, N., FSM�Based Conformance Test�
ing Methods: a Survey Annotated with Experimental
Evaluation, Inform. Software Technol. J., Elsevier, 2010,
vol. 52, pp. 1286–1297.

7. El�Fakih, K., Yevtushenko, N., and Bochmann, G.V.,
FSM�Based Incremental Conformance Testing Meth�
ods, IEEE Trans. Software Eng., 2004, vol. 30, no. 7,
pp. 425–436.

8. Fabbri, S.C.P.F., Maldonado, J.C., Masiero, P.C., and
Delamaro, M.E., Mutation Analysis Testing for Finite
State Machines, Proc. of the 5th International Sympo�
sium on Software Reliability Engineering. Monterey
(California, 1994), pp. 220–229.

9. Fabbri, S.C.P.F., Maldonado, J.C., Delamaro, M.E.,
and Masiero, P.C., Proteum/FSM: A Tool to Support
Finite State Machine Validation Based on Mutation
Testing, Proc. of the XIX International Conference of the
Chilean Computer Science Society (SCCC1999) (Talca,
Chile, 1999), pp. 96–104.

10. Fujiwara, S., Bochmann, G.V., Khendek, F., Amalou, M.,
and Ghedamsi, A., Test Selection Based on Finite State
Models, IEEE Trans. Software Eng., 1991, vol. 17, no. 6,
pp. 591–603.

11. Gill, A., Introduction to the Theory of Finite�State
Machines, McGraw�Hill, 1962.

12. Hierons, R.M. and Merayo, M.G., Mutation Testing
from Probabilistic and Stochastic Finite State Machines,
J. Systems Software, 2009, vol. 82, no. 11, pp. 1804–
1818.

13. Jia, Y. and Harman, M., An Analysis and Survey of the
Development of Mutation Testing, King’s College,
Londin, Crest Center, Technical Report TR�09�06.

14. Koufareva, I., Petrenko, A., and Yevtushenko, N., Test
Generation Driven by User�Defined Fault Models,
Proc. of the 11th International Conference on Testing of
Communicating Systems (TestCom 1999) (Hungary,
1999), pp. 215–233.

15. Koufareva, I. and Dorofeeva, R., A Novel Modification
of W�Method, Joint Bull. Novosibirsk Comput. Center
and A.P. Ershov Inst. Inform. Systems, 2002, vol. 18,
pp. 69–81.

16. Lee, D. and Yannakakis, M., Testing Finite�State
Machines: State Identification and Verification, IEEE
Trans. Comput., 1994, vol. 43, no. 3.

17. Lee, D. and Yannakakis, M., Principles and Methods of
Testing Finite State Machines�a Survey, Proc. IEEE,
1996, vol. 84, no. 8, pp. 1090–1123.

18. Maldonado, J.C., Sugeta, T., and Wong, W.E., Muta�
tion Testing Applied to Validate sdl Specifications,
Proc. of the 16th IFIP International Conference on Test�
ing of Communicating Systems (TestCom 2004), Springer
LNCS 2978, pp. 193–208.

19. Petrenko, A., Checking Experiments with Protocol
Machines, Proc. of the 4th International Workshop on
Protocol Test Systems (IWPTS 1991) (Netherlands,
1991), pp. 83–94.

20. Petrenko, A. and Yevtushenko, N., Test Suite Genera�
tion for a fsm with a Given Type of Implementation
Errors, Proc. of the 12th International Workshop on Pro�
tocol Specification, Testing and Verification (Canada,
1992), pp. 229–243.

21. Petrenko, A., Yevtushenko, N., Lebedev, A., and
Das, A., Nondeterministic State Machines in Protocol
Conformance Testing, Proc. of the IFIP 6th Sixth Inter�
national Workshop on Protocol Test systems (France,
1993), pp. 363–378.

22. Petrenko, A. and Yevtushenko, N., Testing from Partial
Deterministic FSM Specifications, IEEE Trans. Com�
put., 2005, vol. 54, no. 9, pp. 1154–1165.

23. Simao, A., Petrenko A., and Yevtushenko, N., Generat�
ing Reduced Tests for FSMs with Extra States, Proc. of
the 21th International Conference on Testing of Communi�
cating Systems and the 9th International Workshop on For�
mal Approaches to Testing of Software (TestCom/Fates
2009), LNCS 5826, pp. 129–145.

24. Starke, P., Abstract Automata, American Elsevier, 1972.
25. Vasilevskii, M.P., Failure Diagnosis of Automata,

Kibernetika, 1973, vol. 4, pp. 98–108.
26. Vuong, S.T., Chan, W.W.L., and Ito, M.R., The UIOv�

Method for Protocol Test Sequence Generation, Proc.
of the IFIP International Workshop on Protocol Test Sys�
tems, 1989, pp. 161–175.

27. Yannakakis, M. and Lee, D., Testing Finite State
Machines: Fault Detection, J. Comput. System Sci..
1995, vol. 50, pp. 209–227.

28. Yevtushenko, N. and Petrenko, A., Test Derivation
Method for an Arbitrary Deterministic Automaton, in
Automatic Control and Computer Sciences, USA: Aller�
ton Press Inc., 1990, p. 5.

